Search results for "single event burnout"

showing 6 items of 6 documents

Impact of Terrestrial Neutrons on the Reliability of SiC VD-MOSFET Technologies

2021

Accelerated terrestrial neutron irradiations were performed on different commercial SiC power MOSFETs with planar, trench and double-trench architectures. The results were used to calculate the failure cross-sections and the failure in time (FIT) rates at sea level. Enhanced gate and drain leakage were observed in some devices which did not exhibit a destructive failure during the exposure. In particular, a different mechanism was observed for planar and trench gate MOSFETs, the first showing a partial gate rupture with a leakage path mostly between drain and gate, similar to what was previously observed with heavy-ions, while the second exhibiting a complete gate rupture. The observed fail…

Nuclear and High Energy PhysicsMaterials sciencepower MOSFETs01 natural sciences7. Clean energyelektroniikkakomponentitStress (mechanics)chemistry.chemical_compoundReliability (semiconductor)silicon carbidepuolijohteet0103 physical sciencesMOSFETSilicon carbideElectrical and Electronic EngineeringPower MOSFETSilicon Carbide; Power MOSFETs; neutrons; Single Event Effects; Single Event Burnout; gate damagesingle event burnoutLeakage (electronics)010308 nuclear & particles physicsbusiness.industrygate damageneutronsneutronitsingle event effectssäteilyfysiikkaNuclear Energy and EngineeringchemistryLogic gateTrenchtransistoritOptoelectronicsOtherbusinessIEEE Transactions on Nuclear Science
researchProduct

Isotopic Enriched and Natural SiC Junction Barrier Schottky Diodes Under Heavy Ion Irradiation

2022

The radiation tolerance of isotopic enriched and natural silicon carbide junction barrier Schottky diodes are compared under heavy ion irradiation. Both types of devices experience leakage current degradation as well as single-event burnout events. The results were comparable, although the data may indicate a marginally lower thresholds for the isotopic enriched devices at lower linear energy transfer (LET). Slightly higher reverse bias threshold values for leakage current degradation were also observed compared to previously published work.

Nuclear and High Energy Physicsionisoiva säteilySchottky diodesheavy ion irradiationleakage current degradationsingle event effectselektroniikkakomponentitsäteilyfysiikkaNuclear Energy and Engineeringsilicon carbidemonoisotopicpuolijohteetdioditElectrical and Electronic EngineeringDetectors and Experimental Techniquessingle event burnout
researchProduct

Investigation of the Impact of Neutron Irradiation on SiC Power MOSFETs Lifetime by Reliability Tests

2021

High temperature reverse-bias (HTRB), High temperature gate-bias (HTGB) tests and electrical DC characterization were performed on planar-SiC power MOSFETs which survived to accelerated neutron irradiation tests carried out at ChipIr-ISIS (Didcot, UK) facility, with terrestrial neutrons. The neutron test campaigns on the SiC power MOSFETs (manufactered by ST) were conducted on the same wafer lot devices by STMicroelectronics and Airbus, with different neutron tester systems. HTGB and HTRB tests, which characterise gate-oxide integrity and junction robustness, show no difference between the non irradiated devices and those which survived to the neutron irradiation tests, with neutron fluence…

Materials scienceNuclear engineeringneutron beamTP1-1185power device reliabilityBiochemistrySettore FIS/03 - Fisica Della MateriaArticleAnalytical Chemistrychemistry.chemical_compoundReliability (semiconductor)silicon carbideNeutron fluxSilicon carbideNeutronPower semiconductor deviceIrradiationElectrical and Electronic EngineeringPower MOSFETInstrumentationsingle event burnoutChemical technologySettore FIS/01 - Fisica SperimentaleNeutron radiationSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Atomic and Molecular Physics and Opticschemistryfailure in timeSensors
researchProduct

Estimating Terrestrial Neutron-Induced SEB Cross-Sections and FIT Rates for High-Voltage SiC Power MOSFETs

2019

Cross sections and failure in time rates for neutron-induced single-event burnout (SEB) are estimated for SiC power MOSFETs using a method based on combining results from heavy ion SEB experimental data, 3-D TCAD prediction of sensitive volumes, and Monte Carlo radiation transport simulations of secondary particle production. The results agree well with experimental data and are useful in understanding the mechanisms for neutron-induced SEB data.

Radiation transportSiCcross-sectionNuclear and High Energy PhysicsMaterials scienceMonte Carlo method01 natural sciencesIonpowerchemistry.chemical_compoundMOSFETneutronsilicon carbide0103 physical sciencesMOSFETSilicon carbideNeutronElectrical and Electronic EngineeringPower MOSFETMonte Carlosingle event burnoutta114ta213SEB010308 nuclear & particles physicsHigh voltageFITheavy ionComputational physicsNuclear Energy and Engineeringchemistrysäteilyfysiikkatransistoritfailure in timeMREDIEEE Transactions on Nuclear Science
researchProduct

Impact of Electrical Stress and Neutron Irradiation on Reliability of Silicon Carbide Power MOSFET

2020

International audience; The combined effects of electrical stress and neutron irradiation of the last generation of commercial discrete silicon carbide power MOSFETs are studied. The single-event burnout (SEB) sensitivity during neutron irradiation is analyzed for unstressed and electrically stressed devices. For surviving devices, a comprehensive study of the breakdown voltage degradation is performed by coupling the electrical stress and irradiation effects. In addition, mutual influences between electrical stress and radiative constraints are investigated through TCAD modeling.

Nuclear and High Energy PhysicsMaterials scienceRadiation effectsSilicon carbide[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Stress01 natural sciencesNeutron effectsSilicon carbide (SiC)Stress (mechanics)Semiconductor device modelschemistry.chemical_compoundMOSFETReliability (semiconductor)0103 physical sciencesMOSFETSilicon carbideBreakdown voltageSemiconductor device breakdownSilicon compoundsSingle Event BurnoutNeutronIrradiationElectrical and Electronic EngineeringPower MOSFETPower MOSFETComputingMilieux_MISCELLANEOUSElectric breakdownNeutrons[PHYS]Physics [physics]010308 nuclear & particles physicsbusiness.industryLogic gatesWide band gap semiconductorsSemiconductor device reliability[SPI.TRON]Engineering Sciences [physics]/ElectronicsNuclear Energy and Engineeringchemistry13. Climate actionSingle-event burnout (SEB)Atmospheric neutronsOptoelectronicsbusinessTechnology CAD (electronics)
researchProduct

Estimating Terrestrial Neutron-Induced SEB Cross-Sections and FIT Rates for High-Voltage SiC Power MOSFETs

2019

Cross sections and failure in time rates for neutron-induced single-event burnout (SEB) are estimated for SiC power MOSFETs using a method based on combining results from heavy ion SEB experimental data, 3-D TCAD prediction of sensitive volumes, and Monte Carlo radiation transport simulations of secondary particle production. The results agree well with experimental data and are useful in understanding the mechanisms for neutron-induced SEB data. peerReviewed

SiCcross-sectionSEBFITheavy ionpowerMOSFETneutronsäteilyfysiikkasilicon carbidetransistoritfailure in timeMREDMonte Carlosingle event burnout
researchProduct